32 research outputs found

    Heat risk assessment for the Brussels capital region under different urban planning and greenhouse gas emission scenarios

    Get PDF
    Urban residents are exposed to higher levels of heat stress in comparison to the rural population. As this phenomenon could be enhanced by both global greenhouse gas emissions (GHG) and urban expansion, urban planners and policymakers should integrate both in their assessment. One way to consider these two concepts is by using urban climate models at a high resolution. In this study, the influence of urban expansion and GHG emission scenarios is evaluated at 100 m spatial resolution for the city of Brussels (Belgium) in the near (2031-2050) and far (2081-2100) future. Two possible urban planning scenarios (translated into local climate zones, LCZs) in combination with two representative concentration pathways (RCPs 4.5 and 8.5) have been implemented in the urban climate model UrbClim. The projections show that the influence of GHG emissions trumps urban planning measures in each period. In the near future, no large differences are seen between the RCP scenarios; in the far future, both heat stress and risk values are twice as large for RCP 8.5 compared to RCP 4.5. Depending on the GHG scenario and the LCZ type, heat stress is projected to increase by a factor of 10 by 2090 compared to the present-day climate and urban planning conditions. The imprint of vulnerability and exposure is clearly visible in the heat risk assessment, leading to very high levels of heat risk, most notably for the North Western part of the Brussels Capital Region. The results demonstrate the need for mitigation and adaptation plans at different policy levels that strive for lower GHG emissions and the development of sustainable urban areas safeguarding livability in cities

    Single genome sequencing of near full-length HIV-1 RNA using a limiting dilution approach

    Get PDF
    Sequencing very long stretches of the HIV-1 genome can advance studies on virus evolution and in vivo recombination but remains technically challenging. We developed an efficient procedure to sequence near full-length HIV-1 RNA using a two-amplicon approach. The whole genome was successfully amplified for 107 (88%) of 121 plasma samples including samples from patients infected with HIV-1 subtype A1, B, C, D, F1, G, H, CRF01_AE and CRF02_AG. For the 17 samples with a viral load below 1000 c/ml and the 104 samples with a viral load above 1000 c/ml, the amplification efficiency was respectively 53% and 94%. The sensitivity of the method was further evaluated using limiting dilution of RNA extracted from a plasma pool containing an equimolar mixture of three HIV-1 subtypes (B, C and CRF02_AG) and diluted before and after cDNA generation. Both RNA and cDNA dilution showed comparable sensitivity and equal accuracy in reflecting the subtype distribution of the plasma pool. One single event of in vitro recombination was detected amongst the 41 sequences obtained after cDNA dilution but no indications for in vitro recombination were found after RNA dilution. In conclusion, a two-amplicon strategy and limiting dilution of viral RNA followed by reverse transcription, nested PCR and Sanger sequencing, allows near full genome sequencing of individual HIV-1 RNA molecules. This method will be a valuable tool in the study of virus evolution and recombination

    Longitudinal sequencing of HIV-1 infected patients with low-level viremia for years while on ART shows no indications for genetic evolution of the virus

    Get PDF
    HIV-infected patients on antiretroviral therapy (ART) may present low-level viremia (LLV) above the detection level of current viral load assays. In many cases LLV is persistent but does not result in overt treatment failure or selection of drug resistant viral variants. To elucidate whether LLV reflects active virus replication, we extensively sequenced pol and env genes of the viral populations present before and during LLV in 18 patients and searched for indications of genetic evolution. Maximum likelihood phylogenetic trees were inspected for temporal structure both visually and by linear regression analysis of root-to-tip and pairwise distances. Viral coreceptor tropism was assessed at different time points before and during LLV. In none of the patients consistent indications for genetic evolution were found over a median period of 4.8 years of LLV. As such these findings could not provide evidence that active virus replication is the main driver of LLV

    Revealing Kunming’s (China) historical urban planning policies through Local Climate Zones

    Get PDF
    Over the last decade, Kunming has been subject to a strong urbanisation driven by rapid economic growth and socio-economic, topographical and proximity factors. As this urbanisation is expected to continue in the future, it is important to understand its environmental impacts and the role that spatial planning strategies and urbanisation regulations can play herein. This is addressed by (1) quantifying the cities' expansion and intra-urban restructuring using Local Climate Zones (LCZs) for three periods in time (2005, 2011 and 2017) based on the World Urban Database and Access Portal Tool (WUDAPT) protocol, and (2) cross-referencing observed land-use and land-cover changes with existing planning regulations. The results of the surveys on urban development show that, between 2005 and 2011, the city showed spatial expansion, whereas between 2011 and 2017, densification mainly occurred within the existing urban extent. Between 2005 and 2017, the fraction of open LCZs increased, with the largest increase taking place between 2011 and 2017. The largest decrease was seen for low the plants (LCZ D) and agricultural greenhouse (LCZ H) categories. As the potential of LCZs as, for example, a heat stress assessment tool has been shown elsewhere, understanding the relation between policy strategies and LCZ changes is important to take rational urban planning strategies toward sustainable city development

    Longitudinal qPCR study of the dynamics of L. crispatus, L. iners, A. vaginae, (sialidase positive) G. vaginalis, and P. bivia in the vagina

    Get PDF
    Background: To obtain more detailed understanding of the causes of disturbance of the vaginal microflora (VMF), a longitudinal study was carried out for 17 women during two menstrual cycles. Methods: Vaginal swabs were obtained daily from 17 non-pregnant, menarchal volunteers. For each woman, Gram stains were scored, the quantitative changes of 5 key vaginal species, i.e. Atopobium vaginae, Lactobacillus crispatus, L. iners, (sialidase positive) Gardnerella vaginalis and Prevotella bivia were quantified with qPCR and hydrogen-peroxide production was assessed on TMB+ agar. Results: Women could be divided in 9 subjects with predominantly normal VMF (grades Ia, Ib and Iab, group N) and 8 with predominantly disturbed VMF (grades I-like, II, III and IV, group D). VMF was variable between women, but overall stable for most of the women. Menses were the strongest disturbing factor of the VMF. L. crispatus was present at log7-9 cells/ml in grade Ia, Iab and II VMF, but concentrations declined 100-fold during menses. L. crispatus below log7 cells/ml corresponded with poor H2O2-production. L. iners was present at log 10 cells/ml in grade Ib, II and III VMF. Sialidase negative G. vaginalis strains (average log5 cells/ml) were detected in grade I, I-like and IV VMF. In grade II VMF, predominantly a mixture of both sialidase negative and positive G. vaginalis strains (average log9 cells/ml) were present, and predominantly sialidase positive strains in grade III VMF. The presence of A. vaginae (average log9 cells/ml) coincided with grade II and III VMF. P. bivia (log4-8 cells/ml) was mostly present in grade III vaginal microflora. L. iners, G. vaginalis, A. vaginae and P. bivia all increased around menses for group N women, and as such L. iners was considered a member of disturbed VMF. Conclusions: This qPCR-based study confirms largely the results of previous culture-based, microscopy-based and pyrosequencing-based studies

    Quantification of total HIV-1 DNA in buffy coat cells, feasibility and potential added value for clinical follow-up of HIV-1 infected patients on ART

    Get PDF
    Background: Successfully treated HIV-1 infected patients have a sustained undetectable viral RNA load. In these cases the total HIV-1 DNA load may constitute a valuable tool to further follow the overall viral burden. The value of this marker outside of cure research has been rarely studied. Objectives: To develop a quantitative (q)PCR for total HIV-1 DNA quantification in buffy coat cells and to evaluate the value of this parameter in clinical follow-up. Study design: A qPCR using primers and a probe in the conserved HIV-1 LTR region was adapted for use on DNA extracted from buffy coat cells. Sensitivity, accuracy and reproducibility were evaluated using 8E5 cells and samples from naive and treatment experienced patients. The clinical value of DNA load analysis was assessed by testing 119 longitudinal samples from 9 patients before and after ART initiation and 249 cross sectional samples from therapy-experienced patients. Results: Inter- and intra-assay coefficients of variability were 5.56 and 5.94 (%CV). HIV-1 DNA was detected in 249 of the 263 (94.7%) patients on ART for at least 5 months (median: 53 months; IQR: 28-84 months). The HIV-1 DNA load varied between 0.60 and 3.37 copies/10(6) blood cells and showed significant correlation with the pre-ART CD4(+) T-cell count nadir and peak viral RNA load. ART initiation resulted in a slow and limited decline of the total HIV-1 DNA concentration. Conclusions: Quantification of total HIV-1 DNA from buffy coat cells is feasible, sensitive and reliable. Although determination of the on-therapy HIV-1 DNA load may be informative, regular testing has limited clinical value because of the very slow evolution

    Performance and Diagnostic Value of Genome-Wide Noninvasive Prenatal Testing in Multiple Gestations.

    Full text link
    OBJECTIVE: To evaluate the accuracy and diagnostic value of genome-wide noninvasive prenatal testing (NIPT) for the detection of fetal aneuploidies in multiple gestations, with a focus on dichorionic-diamniotic twin pregnancies. METHODS: We performed a retrospective cohort study including data from pregnant women with a twin or higher-order gestation who underwent genome-wide NIPT at one of the eight Belgian genetic centers between November 1, 2013, and March 1, 2020. Chorionicity and amnionicity were determined by ultrasonography. Follow-up invasive testing was carried out in the event of positive NIPT results. Sensitivity and specificity were calculated for the detection of trisomy 21, 18, and 13 in the dichorionic-diamniotic twin cohort. RESULTS: Unique NIPT analyses were performed for 4,150 pregnant women with a multiple gestation and an additional 767 with vanishing gestations. The failure rate in multiple gestations excluding vanishing gestations ranged from 0% to 11.7% among the different genetic centers. Overall, the failure rate was 4.8%, which could be reduced to 1.2% after single resampling. There were no common fetal trisomies detected among the 86 monochorionic-monoamniotic and 25 triplet cases. Two monochorionic-diamniotic twins had an NIPT result indicative of a trisomy 21, which was confirmed in both fetuses. Among 2,716 dichorionic-diamniotic twin gestations, a sensitivity of 100% (95% CI 74.12-100%) and a specificity of 100% (95% CI 99.86-100%) was reached for trisomy 21 (n=12). For trisomy 18 (n=3), the respective values were 75% (95% CI 30.06-95.44%) sensitivity and 100% (95% CI 99.86-100%) specificity, and for trisomy 13 (n=2), 100% (95% CI 20.65-100%) sensitivity and 99.96% (95% CI 99.79-99.99%) specificity. In the vanishing gestation group, 28 NIPT results were positive for trisomy 21, 18, or 13, with only five confirmed trisomies. CONCLUSION: Genome-wide NIPT performed accurately for detection of aneuploidy in dichorionic-diamniotic twin gestations

    Causes and clinical implications of persistent low-level viremia in HIV-1 patients on antiretroviral therapy

    No full text

    Deep sequencing of HIV-1 RNA and DNA in newly diagnosed patients with baseline drug resistance showed no indications for hidden resistance and is biased by strong interference of hypermutation

    No full text
    Deep sequencing of plasma RNA or proviral DNA may be an interesting alternative to population sequencing for the detection of baseline transmitted HIV-1 drug resistance. Using a Roche 454 GS Junior HIV-1 prototype kit, we performed deep sequencing of the HIV-1 protease and reverse transcriptase genes on paired plasma and buffy coat samples from newly diagnosed HIV-1-positive individuals. Selection was based on the outcome of population sequencing and included 12 patients with either a revertant amino acid at codon 215 of the reverse transcriptase or a singleton resistance mutation, 4 patients with multiple resistance mutations, and 4 patients with wild-type virus. Deep sequencing of RNA and DNA detected 6 and 43 mutations, respectively, that were not identified by population sequencing. A subsequently performed hypermutation analysis, however, revealed hypermutation in 61.19% of 3,188 DNA reads with a resistance mutation. The removal of hypermutated reads dropped the number of additional mutations in DNA from 43 to 17. No hypermutation evidence was found in the RNA reads. Five of the 6 additional RNA mutations and all additional DNA mutations, after full exclusion of hypermutation bias, were observed in the 3 individuals with multiple resistance mutations detected by population sequencing. Despite focused selection of patients with T215 revertants or singleton mutations, deep sequencing failed to identify the resistant T215Y/F or M184V or any other resistance mutation, indicating that in most of these cases there is no hidden resistance and that the virus detected at diagnosis by population sequencing is the original infecting variant

    Spatial characterisation of heat risk in the Brussels Capital Region, Belgium

    No full text
    Urban residents are exposed to higher levels of heat stress in comparison to the rural population. For the city of Brussels, we explore the influence of urban planning and global greenhouse gas emissions (GHG) for the near (2031-2050) and far (2081-2100) future. We implemented two urban planning expansion scenarios (translated into Local Climate Zones, LCZ) and two Representative Concentration Pathways (RCPs 4.5 and 8.5). The projections show that the influence of GHG emissions trumps urban planning measures in each of the two periods. In the near future, no large differences are noted between the RCP scenarios. In the far future on the contrary, both heat stress and risk values are twice as large for RCP 8.5 compared to RCP 4.5. Depending on the GHG scenario and the LCZ, heat stress is projected to increase with a factor of 10 by 2090 compared to the present-day climate and urban planning conditions. The imprint of vulnerability and exposure is clearly visible in the heat risk assessment, leading to very high levels of heat risk most notable for the north-western part of the Brussels Capital Region (BCR). The results demonstrate the need for mitigation and adaptation plans at different policy levels that strive for lower GHG emissions and the development of sustainable urban areas safeguarding livability in future cities
    corecore